22 research outputs found

    Techniques for determination of impact forces during walking and running in a zero-G environment

    Get PDF
    One of the deleterious adaptations to the microgravity conditions of space flight is the loss of bone mineral content. This loss appears to be at least partially attributable to the minimal skeletal axial loading concomitant with microgravity. The purpose of this study was to develop and fabricate the instruments and hardware necessary to quantify the vertical impact forces (Fz) imparted to users of the space shuttle passive treadmill during human locomotion in a three-dimensional zero-gravity environment. The shuttle treadmill was instrumented using a Kistler forceplate to measure vertical impact forces. To verify that the instruments and hardware were functional, they were tested both in the one-G environment and aboard the KC-135 reduced gravity aircraft. The magnitude of the impact loads generated in one-G on the shuttle treadmill for walking at 0.9 m/sec and running at 1.6 and 2.2 m/sec were 1.1, 1.7, and 1.7 G, respectively, compared with loads of 0.95, 1.2, and 1.5 G in the zero-G environment

    Can We Trust Computational Modeling for Medical Applications?

    Get PDF
    Operations in extreme environments such as spaceflight pose human health risks that are currently not well understood and potentially unanticipated. In addition, there are limited clinical and research data to inform development and implementation of therapeutics for these unique health risks. In this light, NASA's Human Research Program (HRP) is leveraging biomedical computational models and simulations (M&S) to help inform, predict, assess and mitigate spaceflight health and performance risks, and enhance countermeasure development. To ensure that these M&S can be applied with confidence to the space environment, it is imperative to incorporate a rigorous verification, validation and credibility assessment (VV&C) processes to ensure that the computational tools are sufficiently reliable to answer questions within their intended use domain. In this presentation, we will discuss how NASA's Integrated Medical Model (IMM) and Digital Astronaut Project (DAP) have successfully adapted NASA's Standard for Models and Simulations, NASA-STD-7009 (7009) to achieve this goal. These VV&C methods are also being leveraged by organization such as the Food and Drug Administration (FDA), National Institute of Health (NIH) and the American Society of Mechanical Engineers (ASME) to establish new M&S VV&C standards and guidelines for healthcare applications. Similarly, we hope to provide some insight to the greater aerospace medicine community on how to develop and implement M&S with sufficient confidence to augment medical research and operations

    NASA and Telemedicine: Now and Beyond

    Get PDF
    No abstract availabl

    Operational and Research Musculoskeletal Summit: Summit Recommendations

    Get PDF
    The Medical Informatics and Health Care Systems group in the Office of Space Medicine at NASA Johnson Space Center (JSC) has been tasked by NASA with improving overall medical care on the International Space Station (ISS) and providing insights for medical care for future exploration missions. To accomplish this task, a three day Operational and Research Musculoskeletal Summit was held on August 23-25th, 2005 at Space Center Houston. The purpose of the summit was to review NASA#s a) current strategy for preflight health maintenance and injury screening, b) current treatment methods in-flight, and c) risk mitigation strategy for musculoskeletal injuries or syndromes that could occur or impact the mission. Additionally, summit participants provided a list of research topics NASA should consider to mitigate risks to astronaut health. Prior to the summit, participants participated in a web-based pre-summit forum to review the NASA Space Medical Conditions List (SMCL) of musculoskeletal conditions that may occur on ISS as well as the resources currently available to treat them. Data from the participants were compiled and integrated with the summit proceedings. Summit participants included experts from the extramural physician and researcher communities, and representatives from NASA Headquarters, the astronaut corps, JSC Medical Operations and Human Adaptations and Countermeasures Offices, Glenn Research Center Human Research Office, and the Astronaut Strength, Conditioning, and Reconditioning (ASCR) group. The recommendations in this document are based on a summary of summit discussions and the best possible evidence-based recommendations for musculoskeletal care for astronauts while on the ISS, and include recommendati ons for exploration class missions

    HRP's Healthcare Spin-Offs Through Computational Modeling and Simulation Practice Methodologies

    Get PDF
    Spaceflight missions expose astronauts to novel operational and environmental conditions that pose health risks that are currently not well understood, and perhaps unanticipated. Furthermore, given the limited number of humans that have flown in long duration missions and beyond low Earth-orbit, the amount of research and clinical data necessary to predict and mitigate these health and performance risks are limited. Consequently, NASA's Human Research Program (HRP) conducts research and develops advanced methods and tools to predict, assess, and mitigate potential hazards to the health of astronauts. In this light, NASA has explored the possibility of leveraging computational modeling since the 1970s as a means to elucidate the physiologic risks of spaceflight and develop countermeasures. Since that time, substantial progress has been realized in this arena through a number of HRP funded activates such as the Digital Astronaut Project (DAP) and the Integrated Medical Model (IMM). Much of this success can be attributed to HRP's endeavor to establish rigorous verification, validation, and credibility (VV&C) processes that ensure computational models and simulations (M&S) are sufficiently credible to address issues within their intended scope. This presentation summarizes HRP's activities in credibility of modeling and simulation, in particular through its outreach to the community of modeling and simulation practitioners. METHODS: The HRP requires all M&S that can have moderate to high impact on crew health or mission success must be vetted in accordance to NASA Standard for Models and Simulations, NASA-STD-7009 (7009) [5]. As this standard mostly focuses on engineering systems, the IMM and DAP have invested substantial efforts to adapt the processes established in this standard for their application to biological M&S, which is more prevalent in human health and performance (HHP) and space biomedical research and operations [6,7]. These methods have also generated substantial interest by the broader medical community though institutions like the National Institutes of Health (NIH) and the Food and Drug Administration (FDA) to develop similar standards and guidelines applicable to the larger medical operations and research community. DISCUSSION: Similar to NASA, many leading government agencies, health institutions and medical product developers around the world are recognizing the potential of computational M&S to support clinical research and decision making. In this light, substantial investments are being made in computational medicine and notable discoveries are being realized [8]. However, there is a lack of broadly applicable practice guidance for the development and implementation of M&S in clinical care and research in a manner that instills confidence among medical practitioners and biological researchers [9,10]. In this presentation, we will give an overview on how HRP is working with the NIH's Interagency Modeling and Analysis Group (IMAG), the FDA and the American Society of Mechanical Engineers (ASME) to leverage NASA's biomedical VV&C processes to establish a new regulatory standard for Verification and Validation in Computational Modeling of Medical Devices, and Guidelines for Credible Practice of Computational Modeling and Simulation in Healthcare

    Credibility Assessment of Deterministic Computational Models and Simulations for Space Biomedical Research and Operations

    Get PDF
    Human missions beyond low earth orbit to destinations, such as to Mars and asteroids will expose astronauts to novel operational conditions that may pose health risks that are currently not well understood and perhaps unanticipated. In addition, there are limited clinical and research data to inform development and implementation of health risk countermeasures for these missions. Consequently, NASA's Digital Astronaut Project (DAP) is working to develop and implement computational models and simulations (M&S) to help predict and assess spaceflight health and performance risks, and enhance countermeasure development. In order to effectively accomplish these goals, the DAP evaluates its models and simulations via a rigorous verification, validation and credibility assessment process to ensure that the computational tools are sufficiently reliable to both inform research intended to mitigate potential risk as well as guide countermeasure development. In doing so, DAP works closely with end-users, such as space life science researchers, to establish appropriate M&S credibility thresholds. We will present and demonstrate the process the DAP uses to vet computational M&S for space biomedical analysis using real M&S examples. We will also provide recommendations on how the larger space biomedical community can employ these concepts to enhance the credibility of their M&S codes

    How to Develop and Interpret a Credibility Assessment of Numerical Models for Human Research: NASA-STD-7009 Demystified

    Get PDF
    In the wake of the Columbia accident, the NASA-STD-7009 [1] credibility assessment was developed as a unifying platform to describe model credibility and the uncertainties in its modeling predictions. This standard is now being adapted by NASAs Human Research Program to cover a wide range of numerical models for human research. When used properly, the standard can improve the process of code development by encouraging the use of best practices. It can also give management more insight in making informed decisions through a better understanding of the models capabilities and limitations.To a newcomer, the abstractions presented in NASA-STD-7009 and the sheer volume of information that must be absorbed can be overwhelming. This talk is aimed at describing the credibility assessment, which is the heart of the standard, in plain terms. It will outline how to develop a credibility assessment under the standard. It will also show how to quickly interpret the graphs and tables that result from the assessment and how to drill down from the top-level view to the foundation of the assessment. Finally, it will highlight some of the resources that are available for further study

    The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Get PDF
    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight

    Integration of Evidence Base into a Probabilistic Risk Assessment

    Get PDF
    INTRODUCTION: A probabilistic decision support model such as the Integrated Medical Model (IMM) utilizes an immense amount of input data that necessitates a systematic, integrated approach for data collection, and management. As a result of this approach, IMM is able to forecasts medical events, resource utilization and crew health during space flight. METHODS: Inflight data is the most desirable input for the Integrated Medical Model. Non-attributable inflight data is collected from the Lifetime Surveillance for Astronaut Health study as well as the engineers, flight surgeons, and astronauts themselves. When inflight data is unavailable cohort studies, other models and Bayesian analyses are used, in addition to subject matters experts input on occasion. To determine the quality of evidence of a medical condition, the data source is categorized and assigned a level of evidence from 1-5; the highest level is one. The collected data reside and are managed in a relational SQL database with a web-based interface for data entry and review. The database is also capable of interfacing with outside applications which expands capabilities within the database itself. Via the public interface, customers can access a formatted Clinical Findings Form (CLiFF) that outlines the model input and evidence base for each medical condition. Changes to the database are tracked using a documented Configuration Management process. DISSCUSSION: This strategic approach provides a comprehensive data management plan for IMM. The IMM Database s structure and architecture has proven to support additional usages. As seen by the resources utilization across medical conditions analysis. In addition, the IMM Database s web-based interface provides a user-friendly format for customers to browse and download the clinical information for medical conditions. It is this type of functionality that will provide Exploratory Medicine Capabilities the evidence base for their medical condition list. CONCLUSION: The IMM Database in junction with the IMM is helping NASA aerospace program improve the health care and reduce risk for the astronauts crew. Both the database and model will continue to expand to meet customer needs through its multi-disciplinary evidence based approach to managing data. Future expansion could serve as a platform for a Space Medicine Wiki of medical conditions
    corecore